
time

pe
rf

or
m

an
ce

A

B

t1 t2
Figure 1 — Two learning curves

Discount learnability evaluation
Paulo J. Santos
Albert N. Badre

Graphics, Visualizationa & Usability Center
College of Computing

Georgia Institute of Technology
Atlanta GA 30332-0280 USA

Tel: +1 404 8942598
E-mail: {pas, badre}@cc.gatech.edu

ABSTRACT
Learnability evaluation has traditionally required expensive
and time-consuming techniques. Practitioners have
refrained from performing extended learnability evaluation
due to its prohibitive costs. We propose a discount method
for evaluation of an interactive system's learnability. Our
method is based on automated logging of user actions,
detection of user mental chunks, and observation of chunk
size as it grows over time with experience. We introduce a
model for chunk detection, and present experimental results
validating the use of chunk size as an indicator of
learnability.

Keywords
Learnability, ease of learning, discount usability, usability
evaluation, chunking

INTRODUCTION
One important component of an interactive system's
usability is its learnability. Learnability, also known as
“ease of learning”, can be defined as a measure of the effort
required for a typical user to be able to perform a set of
tasks using an interactive system with a predefined level of
proficiency. Most authors of usability and interface design
publications (including, for example, [12, 16, 18, 22])
recognize the importance of ease of learning in interfaces.
Nielsen [12] even claims that “learnability is in some sense
the most fundamental usability attribute”.

Despite the consensus that learnability is an important
issue in usability, few1 of those authors discuss at length
the issue of learnability evaluation. Some stress the
importance of evaluating learnability for the first-time user.
Assessment of initial learnability is certainly crucial to the
study of a system, but it is by no means a complete study
of a system's learnability. It is, at best, a measure of the
system's intuitiveness. Measuring intuitiveness, or initial
ease of learning, does not provide the analyst with
information about the learnability of the system over an
extend period of use.

1 we are tempted to claim “none” instead of “few”, but
we'd be accused of not having reviewed the literature
throughly

We recognize the difficulties in measuring learnability, and
understand that those may be the main reason for the
limited discussion of learnability evaluation in most texts.
The most significant obstacle to extended learnability
studies is probably cost. Observing users over an extended
period of time would consume huge resources, particularly
observer time. Even if observation could be fully
automated (through, for example, the use of event logging),
a detailed analysis to study learnability would probably be
very costly.

Despite all the difficulties associated with longitudinal
studies of learnability, we believe that the evaluation of
learnability over an extended period of time is valuable.
The initial trend of a learning curve, observed on novice
users, is not necessarily an indicator of continued learning.
Figure 1 (adapted from [12]) illustrates this concept. A and
B represent learning curves for two hypothetical systems.
System A favors intuitiveness and fast learning, whereas
system B optimizes performance for the expert user. At
time t1 in Figure 1, system A would seem to be preferable
to system B. But at time t2, system B is clearly the
winner. Clearly, in this example, system B is harder to
learn at first, but once users overcome the initial obstacles,
they learn faster and become more proficient. This example
illustrates that an extrapolation of an analysis of short-term
performance to infer long-term performance is prone to
errors.

Design decisions affecting the learning curve of a system
depend on the goals of the system, the target user

population, the training costs, the existence of time-critical
tasks, and other system design considerations. We are not
claiming that either A or B would always be preferable
{actually, sometimes it is possible to combine the best of
both worlds; configurable and adaptive interfaces are a step
in that direction), but are simply stating that one needs to
be able to evaluate extended learnability in order to make an
informed decision about long term use of the system.

Clearly, there are cases when we need to study extended use
of the system, particularly its learnability. Two major
techniques have been used to meet this need: cognitive
walkthroughs and field observations. Cognitive
walkthroughs [10, 14] perform a theoretical evaluation of
an interface. Polson and Olson [15] presented some
encouraging results of using cognitive walkthroughs to
estimate learnability. The disadvantage of the method,
however, is that is requires specialists familiar with the
cognitive walkthrough methodology to devote a significant
amount of time to analyze the interface. Field observations
consist of usage data that is collected after the system is
deployed and released: user observation, monitoring of
customer support calls, and user feedback are all methods
that can be used to monitor usage over a long period of
time, and estimate learning curves.

All of the existing methods, however, are costly to execute.
Cognitive walkthrough requires highly-paid and specialized
cognitive scientists to devote time to analyze an interface in
detail. And field observations require field trips, encoding
of data, and substantial analysis time. Field observations
and logging of customer's activities may be further
complicated by the need to preserve privacy and
confidentiality of the customer's data and use of the system.

Budget overruns and missed deadlines are a serious problem
affecting usability evaluation. Often, usability evaluators
can not afford to spend the time or money they would like
to make a complete usability study. Discount usability
techniques [11,13] have become quite popular, because they
are more likely to result in a better return on the usability
expenditures. The final results of the usability evaluation
may not be as good or reliable as compared to those of a
more expensive test, but since they are so quick and cheap
to execute, any benefits that can be derived from their use
come at almost no cost.

We propose a discount method that provides an indication
of learnability in a totally automated manner. It is installed
to run in the background as the user uses the system, needs
little or no configuration to setup, preserves confidentiality
of the users data and interaction, and produces numerical
results that can be easily compared and plotted. Most
importantly, since it can be significantly automated, its
cost is minimal.

CHUNKING AND CHUNK DETECTION
Our technique for studying learnability is based on the
analysis of user chunks. A chunk is a coherent cognitive
unit that the user holds in short term memory while
performing a cognitive operation. Chunks and the

mechanisms people use for chunking have been studied for
the last three decades.

A body of literature, generally referred to as the chunking
literature, establishes relationships between cognitive stages
and observable behavior. User behaviors have been shown
to be intimately related with their cognitive skills. Results
such as those found in [1, 2, 5, 8, 21] show that experts
organize the components of their mental process in larger
chunks than novices. The chunk boundaries can be
identified by pauses in the observed behavior. The
feasibility of chunk identification by pauses has been
demonstrated in several domains, including games [8, 17]
and tactical decision scenarios [2]. More recently, we have
shown that chunk detection is also feasible in human–
computer interaction [20], by analyzing the user operations
and the pauses between them.

When interacting with a computer, users typically behave
according to the acquisition/execution cycle [7]. During the
acquisition phase, users think of a goal, formulate a
strategy to reach their goal, and plan the execution of the
strategy on the computer. During this phase, there is
typically no physical interaction with the computer. Then
they proceed to the execution phase, when a burst of
activity occurs as users carry out the plan by interacting
with the computer. Once they have reached their goal (or
failed to reach it), the cycle repeats itself with a new
acquisition phase. During execution, the execution plan is
stored in the user's short term memory, and is referred to as
a chunk.

Some models have been proposed for the estimation of the
execution time of tasks by experts, e.g. [6, 9]. In order to
identify user chunks, we use the results of predictive models
for execution time. In particular, we start by using a
variation of the Keystroke-Level Model [7] as a first
approximation. It is simple enough, and fits in nicely with
the principle of “discount usability”. Other models may be
used as alternatives, and the same principle should still
work.

The general operation of the chunk detection algorithm is as
follows:

• Record all the low level user events (keystrokes, mouse
clicks, etc.), using any general purpose logging tool
(such as [3, 4]).

• For each sequence of events in the interaction log, apply
the predictive model to predict execution time.

• If a pause in the interaction log cannot be justified by
the predictive model, assume that the pause was caused
by a shift of the user to the acquisition phase, and assess
a chunk boundary at that point.

An illustration of chunking mechanism is provided in
Figure 2. The top timeline represents a sequence of user
events. By applying the chunking algorithm, we assess
chunk boundaries where pauses are too long to be

Figure 3— Example of a simple interface to the
Minesweeper problem

justifiable by a predictive model for execution time, and
aggregate the units between boundaries into groups, which
we call chunks.

Figure 2 — An example of chunking

In [20] we report the results of an experiment in which we
matched chunks detected as described above with user verbal
protocols. In that study, we found that the chunks
correspond, for the most part, to the execution of user
goals.

CHUNKS AS INDICATORS OF LEARNABILITY
One important observed characteristic of chunks is that they
grow as users become more experienced. In many other
domains, expert subjects have been shown to form larger
chunks and more regular chunks than inexperienced users.
In the human–computer interaction domain, one would
expect this to also be verifiable. More experience users can
formulate higher level goals and execute more complex
execution plans, which generally require more events
(keystrokes or mouse clicks).

We will therefore use chunk size as an indicator of
expertise. The variation of chunk size would then be an
indicator of learning. We hypothesize that chunk size
grows with experience, and that the variation of chunk size
is an indicator of learning by the users.

To validate our hypothesis, we conducted an experiment. In
the experiment we use an application domain that involves
a high degree of strategy and significant mouse-clicking
activity: a computer game. The game used will be a
version of the game of Minesweeper, which provides for
significant learning and use of strategies.

The game of Minesweeper provides many opportunities to
learn strategies. After the strategies are learned, the user
may apply them. When a strategy involves clicking in
multiple cells, the system should be able to detect that a
new larger chunk was formed. Users unfamiliar with a
particular strategy will reason on cells individually, and
probe them one at a time, with significant pauses between
them. On the other hand, users that recognize a pattern and
have proceduralized a strategy to solve it will probe
multiple cells in quick succession. Distinguishing between
both types of activity (single or multiple cell probing) is
fairly straightforward, and can be done by inter-chunk
pauses analysis. We then need to assert that the larger and
more complex chunks are observed in the interaction of the
more “experienced” user.

In this experiment, we controlled “experience” by
influencing learning. Learning was stimulated through
tutoring of strategies. Some participants in the experiment
were tutored, while others were left to discover the
strategies on their own. In pre-experiment pilot studies, we
observed that the strategies of the game are not trivial: users
required a long time and a large number of trials before they
could recognize interesting patterns on the board, and
proceduralize complex probing actions. When assisted
(tutored), they would immediately recognize a new pattern,
understand how it could be derived from smaller patterns
that they had already understood, and easily proceduralize the
solution of the new pattern. That was a good indication
that tutoring might be useful, in this case, to control
learning.

Figure 3 provides an illustrative example of this game.
The object of the game is to locate all the mines placed in a
mine field. The mine field consists of a rectangular board
of square cells. In each cell, there could be a mine. The
object of the game is to locate all the mines without ever
touching one. To probe a cell, the user should click on its
square. If there is a mine in that cell, it explodes and the
user loses the game. If the cell does not contain a mine, a
number will appear, indicating how many mines are in the
cells that surround it.

Design
In this experiment, we have two independent variables
(tutoring and session number) and one dependent variable
(size of chunks.) We control learning of strategies in this
experiment through tutoring of patterns and strategies to
solve them, and we measure chunk size by the number of
actions (mouse clicks) in a chunk. The independent
variable “tutoring” has two values: assisted and unassisted
learning, with half the participants being assigned randomly
to each group. Those in the assisted learning group receive
tutoring throughout the experiment, while those in the
unassisted learning group receive limited tutoring. The
independent variable “session number” has nine values, 1

through 9, corresponding to each of the boards that the
participants were asked to solve, in the order thet they were
introduced.

To develop the tutoring program, we started by developing
and selecting a set of sensible strategies. We decided on a
set of nine strategies, and developed a tutoring program
designed to teach those strategies in a logical sequence.
Lessons in the tutoring program were organized in
increasing order of complexity, with each strategy lesson
building on the knowledge acquired during the previous
lessons. Each lesson consisted of a handout with a diagram
illustrating a typical arrangement of known and unknown
cells on the board, accompanied by the solution to that
particular configuration, with an explanation of the
reasoning behind the solution. The participant was then
free to discuss the learned strategy with the experimenter, to
confirm that each strategy had been understood.

Between lessons, participants used the computer to solve
Minesweeper boards. The boards were not random, but had
been previously designed to incorporate instances of the
strategies that had been learned. Thus, the participants had
the opportunity to practice solving boards using the
strategies that they had learned. Note that, however, every
board was solvable using just the basic rules of the game.
Knowledge of the more complex strategies only helped with
the performance, but was not required to successfully solve
the boards.

Each participant was given a sequence of nine different
boards to solve. Every board had the same size (20 by 20
cells), with the number of mines varying between 24 and
37, with an average of 32.7 mines. That corresponds to a
mine density range of 6 to 9.25 percent of the board, and an
average density of 8.175 percent.

The paragraphs above describe the tutoring and practice
scenario used for the participants in the assisted learning
group. Participants in this group received two sessions of
tutoring at the beginning (before attempting to solve the
first board), and then one session of tutoring before each of
the next seven boards. No lesson was given between the
eighth and ninth boards. Participants in the unassisted
learning group received the same two lessons before the
first board, but were not given any further assistance.
Basically, participants in the unassisted learning group were
left to learn strategies and acquire skills by themselves.
Presumably, their performance will be no better than the
performance of participants in the assisted learning group,
and, if the observations in the pilot study are to be
considered, their performance should be significantly worse
than that of the participants in the assisted learning group.

Participants
Twenty-four participants were used in this experiment. All
participants were students at the Georgia Institute of
Technology, currently enrolled in undergraduate classes in
the School of Psychology. Nine participants were female,
and thirteen were male. Ages range from 19 to 34 years,
with a median of 21 and an average of 23.4 years. No

expertise in computer use was required. However, it was
required that participants should not have had exposure to
the Minesweeper game (computer or non-computer version)
prior to this Experiment. Class credit towards their
psychology courses was awarded to every participating
participant. Before the first experimental session, each of
the 24 participants was randomly assigned to one of the two
experimental conditions.

Procedure
Participants were scheduled to participate in 60-minute
experimental sessions, during the day time on weekdays.
All participants completed the sessions. All but one of the
participants finished their participation in the experiment in
the allocated time or less; one participant had to
voluntarily accept an extension of the session to allow him
time to finish all the boards (this participant was in the
unassisted learning group.)

Each session started with personal introductions. A good
inter-personal relationship between experimenter and
participant was important for a successful completion of the
tutoring phases of the experiment. The introductions were
an important step towards establishing a good relationship,
as they fostered confidence and put the participant at ease.
Participants were then asked to read and sign an informed
consent form, authorizing their participation in the
experiment. The formal part of the experiment session
began with a reading of the instructions, including and
outline of the experimental procedure and complete game
rules. Participants were told that their goal was to
complete as many boards as possible, in the shortest
amount of time. The speed factor was introduced to
encourage participants to work fast, leading them to
proceduralize their chunks.

The board using during the experiment had the visual
presentation similar to that presented in Figure 3. At the
top of the screen is a box displaying a number that indicates
how many mines are left to be uncovered. To the user, that
may be seen as the current game “score”. The object is to
take the score down to zero by locating all the mines. In
addition, the system displays help messages such as “you
may begin” or “use left button to probe or right to mark” at
the top, to the right of the “score” indicator. The remaining
useful screen space is occupied by the game board, with 20
by 20 cells. Every cell was initially white, indicating that
no information about the cell was known. As each cell was
probed (by clicking on it using the left mouse button), its
background would become black. If the probed cell
contained a mine, the mine would “explode”, revealing the
location of every mine on the board and terminating the
game with a failure. If, on the other hand, a probed cell did
not contain a mine, the number of mines in its adjacent
cells would be revealed. If, however, the there was no mine
to be found in any of the adjacent cells, the cells probed
would simply turn black without the indication of any
number (implicitly zero), and the system would
automatically probe all the neighboring cells. It would
then continue to recursively probe neighboring cells of

additional cells that had no mines in their neighbors. This
automatic probing of neighboring cells was done only for
this trivial case in order to save time during the
experimental session. Grid lines on the board were drawn in
orange, to clearly distinguish them from all the black and
white features on the board.

To perform the two operations on each cell (probe or mark),
the left and right mouse buttons were used. Since both
actions (probe and mark) use equivalent interaction
techniques, there should be no effect of selection technique
on performance. The use of these equivalent interaction
techniques should eliminate a possible effect on
performance of executing the operations.

A Minesweeper program was developed specifically for this
experiment. It was developed using the C language on a
UNIX system, with the interface being done by use of the
X Windows System. The program read board configuration
data from a layout file, and internally recorded every event
as the user clicked to probe and mark cells. The user events
and internal system state were recorded to a file during the
interaction. A timestamp was associated with every user
event. Timestamps were recorded in milliseconds relative
to the beginning of the session (time 0) and are believed to
be accurate to 1/60th of a second. The experiment was
executed on a SparcStation II running SunOS operating
system (a flavor of UNIX) and X Windows. No knowledge
of UNIX or X Windows was required of the user. A pre-
arranged script for each session automated the session, and
the user only had to solve the sequence of boards by using
the mouse to probe and mark cells.

For the tutoring session, participant and experimenter sat at
a desk to the side of the computer desk, and together went
over the strategy being introduced in the lesson. The
participant was first given the opportunity to read and
analyze the page containing the lesson material, and then
participant and experimenter discussed the strategy, and how
one would reason to get to that strategy.

The interaction with the computer occurred with the
participant sitting in front of the computer, and the
experimenter apparently retreated from the scene. The
experimenter stayed in the room during the interaction
portions of the sessions, but never approached the
participant or the computer to intervene or to closely
observe the interaction.

At the end of each session, users were asked to fill out a
demographic questionnaire, and were given class credit for
their participation in the Experiment.

Analysis
Comparing inexperienced and experienced users (in our case,
unassisted and assisted participants, respectively), we should
observe that experienced participants form larger chunks
(more events peer chunk) than inexperienced participants.

There will certainly be other differences (for example,
success rate, total time for completion of each problem),

but analyzing these differences would not necessarily reveal
information directly related to chunks.

To analyze the results of this experiment, we compare the
chunk size of the chunks detected for the two experimental
groups. If our hypothesis that our chunk detection
algorithm really detects chunks is true, then we should
observe characteristics of chunks in the units detected by
our algorithm. In this experiment, we would expect the
following results:

• Chunks should grow as users become more
experienced. In this experiment, we will verify that
there is a positive and significant positive effect of
“session number” on chunk size.

• More experienced users will form larger chunks than
less experienced users. In this experiment, we will
verify that there is a significant positive effect of the
“tutoring program” (which directly relates to learning
speed) on chunk size. Such an effect should occur
only after some sessions of tutoring. In particular,
there should be no difference between groups on their
performance in the first session (since both groups had
received the same tutoring up to that point), but the
difference should manifest itself in later sessions.

To perform the analysis that would lead to answers to the
above questions, we analyzed the data as a three-factor two-
stage nested design. Three factors were considered. One
independent factor was “session number”, with nine levels
(1 through 9.) Another independent factor was “tutoring
program” with two levels (assisted or unassisted learning).
Finally, a third factor, nested within “tutoring program”,
was “participant”, with twelve levels for each level of the
“tutoring program” factor. We performed an analysis of
variance for the above design, and identified the sources of
variance in the experiment.

Results
We executed 24 sessions (12 in each group). In each
session, participants solved or attempted to solve nine
Minesweeper boards, for a total of 216 boards across all
sessions. Across all those sessions, a total of 7,485 user
events were generated. Each event corresponds to one user
action on the board (“mark” or “probe” a cell.)

After collecting the data from all the sessions, we executed
our chunk detection algorithm on all the data sets.
Running the data through the chunk detection algorithm
resulted in a total of 4,184 chunks. Just over half of all the
chunks (2,155, or 51.5% of the total) consisted of single
events. The largest chunk recorded contained seven events.
Figure 4 shows a distribution of chunk size, as a
percentage of total number of chunks.

Chunk size (number of events)

F
ra

ct
io

n
 o

f
ch

u
n

ks

0%

10
%

20
%

30
%

40
%

1

Figure 4 — Distribution of chunk size (number of events
per chunk) across all sessions

We then performed an analysis of variance on the data.
From this analysis we conclude that there is a strong effect
of tutoring on chunk size. Although there is no strong
effect of session alone, there is a significant effect of the
interaction of session with tutoring. Finally, there is also a
significant effect of participant (within tutoring). All of
these are significant at the one percent level. In addition,
the interaction of session and participant is significant at
the five percent level. (Detailed analysis results are
available in [19].)

The purpose of this experiment was to test that chunk size
grows with experience. Experience should be influenced by
two factors in this experiment: the number of boards
previously solved, and the tutoring program. Table 1
presents average chunk size, across all 24 participants, for
each session. The same data is illustrated graphically in
Figure 5.

Session
number

Average
chunk size

1 1.13

2 1.39

3 1.66

4 1.80

5 1.94

6 2.18

7 2.10

8 2.52

9 2.38

Table 1 — Chunk size versus session number

There is a clear indication that chunk size increases with
session number. From the analysis of variance we see that
chunk size is affected by several factors that contribute to
experience and skill: tutoring and the interaction of tutoring
and session.

The analysis of variance also shows that tutoring strongly
affects the chunk size. Table 2 presents the data collected
to verify that there is a significant positive effect of
tutoring on chunk size. Participants in the assisted learning

Session number

A
ve

ra
g

e
ch

u
n

k
si

ze

1.00

1.50

2.00

2.50

3.00

1 2 3 4 5 6 7 8 9

Figure 5 — Chunk size versus session number

group constructed larger chunks faster than participants in
the unassisted learning group. Participants in the assisted
learning group were forming chunks averaging two events
by session 3, while participants in the unassisted learning
group took until session 8 to reach that level.

Session Assisted Unassisted

1 1.13 1.14

2 1.49 1.30

3 1.91 1.43

4 2.30 1.46

5 2.60 1.57

6 2.59 1.64

7 2.39 1.81

8 3.38 1.99

9 3.31 1.96

Table 2 — Chunk size versus session number versus
tutoring

The analysis of variance also shows that tutoring strongly
affects the chunk size. Table 3 clearly stresses that the
effect is a strong positive one, by showing average chunk
size for each participant during the first and last sessions.
No data is shown for the last session of participants 2 and
24 because both of these participants hit a mine on their
first probe of the board.

The analysis of variance had not shown any significant
effect of session on chunk size. There is, however, a strong
effect of the interaction of session and tutoring. This
suggests that the learning, if any, of non-assisted
participants is confounded with experimental error and
individual differences. Clear examples of that lack or
learning were exhibited, for example, by participants 6, 15
and 18 (all in the unassisted learning group).

Participant Session 1 Session 9

1 1.11 3.00

2 1.12

3 1.11 2.24

4 1.14 1.73

5 1.11 5.00

6 1.05 1.25

7 1.10 3.59

8 1.14 2.74

9 1.08 1.76

10 1.10 4.06

11 1.17 3.40

12 1.19 3.25

13 1.19 2.20

14 1.13 1.80

15 1.14 1.00

16 1.21 3.50

17 1.00 3.00

18 1.18 1.25

19 1.12 2.12

20 1.15 2.09

21 1.07 1.50

22 1.11 2.00

23 1.30 2.05

24 1.15

Table 3 — Chunk size for each participant, first and last
session

Discussion
The results of this experiment strongly support the claim
that the groups of events identified by our chunk detection
algorithm share characteristics with chunks. Specifically,
the size of events recorded grow with experience and skill.
This is the same characteristics that has been shown of
chunks.

Individual differences were strongly noticed in this
experiment. We had observed anecdotal evidence of
significant difference between individuals during the
experimental sessions. Some participants were good
logical reasoners, some were good at recognizing patterns,
some were fast learners, … Others, not quite so. The
analysis of the data confirmed that individual differences
significantly affect the chunk sizes. This is a very expected
result, as people have been shown to differ greatly in tasks
that involve cognitive skills, learning, and complex
reasoning. However, the object of this experiment was not
to discern how individual differences affect performance at
Minesweeper. Therefore, we simply confirm that individual
differences are significant, but we do not delve into an
analysis of the causes or consequences of those differences.
It is important, however, to state that this experiment

shows that our chunk detection algorithm appears to
provides reliable results across a wide variety of individuals,
and that chunk size seems to be a consistently good
indicator of expertise.

CONCLUSIONS AND FUTURE WORK
An analysis of chunk size over time provides an indication
of user expertise. Since expertise is a direct result of
learning, the variation of chunk size over time is an
indicator of learnability. Figure 5, plotting the
experimental results of chunk size over time, may be
viewed as an approximate illustration of a learning curve.

Soon, in cooperation with a major software company, we
plan to instrument beta versions of software to record
keystroke information from the usage of beta testers. We
will then analyze chunk sizes from the logs, and have some
indicators of learnability available for the company before
the final version of the product is released.

REFERENCES
1. Badre, A.N., Designing chunks for sequentially

displayed information. In Badre, A. and Shneiderman,
B. (Eds.), Directions in Human/Computer Interaction.,
Ablex, pp. 179-193, Norwood, New Jersey, 1982.

2. Badre, A.N., Selecting and representing information
structures for visual presentation. IEEE Transactions on
Systems, Man, and Cybernetics 12, 4 (Jul/Aug 1982),
pp. 495-504.

3. Badre, A.N., Guzdial, M., Hudson, S.E., and Santos,
P.J., A user interface evaluation environment using
synchronized video, visualizations and event trace data,
Journal of Software Quality, 4, pp. 101-113, 1995.

4. Badre, A.N. and Santos, P.J., CHIME: a knowledge-
based computer–human interaction monitoring engine,
Technical report GIT/GVU-91-06, Graphics,
Visualization and Usability Center, Georgia Institute of
Technology, Atlanta, Georgia, 1991.

5. Barfield, W., Expert-novice differences for software:
implications for problem-solving and knowledge
acquisition. Behaviour and Information Technology 5,
1 (1986), pp. 15-29.

6. Card, S.K., Moran, T.P., and Newell, A., Computer
text-editing: an information-processing analysis of a
routine cognitive skill. Cognitive Psychology
12(1980), pp. 32-74.

7. Card, S.K., Moran, T.P., and Newell, A., The
Keystroke-Level Model for user performance time with
interactive systems. Communications of the ACM 23,
7 (Jul 1980), pp. 396-410.

8. Chase, W.G. and Simon, H.A., Perception in chess.
Cognitive Psychology 4 (1973), pp. 55-81.

9. Kieras, D.E. and Polson, P.G., An approach to the
formal analysis of user complexity. International
Journal of Man-Machine Studies 22(4), Apr. 1985, pp.
365-394.

10. Lewis, C., Polson, P., Wharton, C., and Rieman, J.,
Testing a walkthrough methodology for theory-based
design of walk-up-and-use interfaces, in Proceedings of
ACM CHI'90 Conference on Human Factors in
Computing Systems (Seattle, WA, April 1–5, 1990),
ACM Press, pp. 235–242.

11. Nielsen, J., Usability engineering at a discount, in
Salvendy, G. and Smith, M.J. (eds.), Designing and
Using Human-Computer Interfaces and Knowledge
Based Systems, Elsevier Science Publishers,
Amsterdam, 1989, pp. 394-401.

12. Nielsen, J., Usability engineering, Academic Press,
Boston, 1993.

13. Nielsen, J., Applying discount usability engineering,
IEEE Software 12(1), Jan. 1995, pp. 98–100.

14. Polson, P., Lewis, C., Rieman, J., and Whaton, C.,
Cognitive walkthroughs: a method for theory-based
evaluation of user interfaces, International Journal of
Man–Machine Studies, 36(5), May 1992, pp. 741-773

15. Polson, P.G. and Olson, J.S., An approximate method
for estimating total learning time: an example of a
usability inspection method derived from cost/benefit
considerations. Paper presented at Human–Computer
Interaction Consortium Annual Winter Workshop
(Pittsburgh, PA, Jan. 25–28, 1992).

16. Preece, J., Rogers, Y., Sharp, H., Benyon, D.,
Holland, S., Carey, T., Human–Computer Interaction,
Addison-Wesley, Wokingham, England, 1994.

17. Reitman, J.S., Skilled perception in Go: Deducing
memory structures from inter-response times. Cognitive
Psychology 8(1976), pp. 336-356.

18. Rubin, J., Handbook of usability testing: Hot to plan,
design, and conduct effective tests, John Wiley & Sons,
New York, 1994.

19. Santos, P.J., Automatic detection of user
transitionality by analysis of interaction, doctoral
dissertation, Georgia Institute of Technology, 1995.

20. Santos, P.J. and Badre, A.N., Automatic chunk
detection in human–computer interaction, in
Proceedings of the Workshop on Advanced Visual
Interfaces AVI'94 (Bari, Italy, June 1–4, 1994), ACM
Press, New York, pp. 69–77.

21. Shneiderman, B., Exploratory experiments in program-
mer behavior. International Journal of Computer and
Information Sciences 5(2), 1976, pp. 123-143.

22. Shneiderman, B., Designing the user interface:
strategies for effective human–computer interaction, 2nd
edition, Addison-Wesley, Reading, Massachusetts, 1992

23. Wharton, C., Rieman, J., Lewis, C., Polson, P., The
cognitive walkthrough: a practitioner's guide, in
Nielsen, J. and Mack, R.L. (eds.), Usability inspection
methods, Wiley, New York, 1994, pp. 105–140.

