
PLANET-MINESWEEPER.COM

A possible explanation for the Board Cycle Bug
of Microsoft Minesweeper

Rodrigo S. Camargo*

Department of Civil Engineering, Federal University of Espírito Santo, Brazil
minesweeperclone@yahoo.com

SUMMARY

The Microsoft version of the game Minesweeper has a known bug that makes sequences of boards appear again after
generating thousands of boards, in a cycle, disturbing the random nature of the game. This article exposes the results of a
research made in 2004, as well as the subsequent secondary discoveries, like the existence of boards made of combinations
of mines from two consecutive boards of the cycle, the convergence of these boards towards the cycle, the fact that the
mines of a given board can be put in a real order, and the relation between the locations of a same mine, if used to build
beginner or intermediate boards. Finally, it gives a probable single explanation for all the phenomena observed, based on
how pseudo-random number generators work, and on the probable conversion of these random numbers into boards.

1. Introduction

The Microsoft version of Minesweeper (the one that
comes with Microsoft Windows) has a bug known as
Board Cycle Bug. It is basically the fact that if a player
starts a new game several thousands of times, the initial
sequence of boards will eventually appear again, in an
infinite cycle ([4]). However, this cycle is so huge that it
is hardly noticed by most players.

On the other hand, this bug is in conflict with the
random nature of the game, which assumes the boards
to be truly random, or at least up to an unnoticeable
degree. Also, this has been source of much controversy
over the years, since any player with enough knowledge
about this bug can take advantage of it to cheat,
achieving unreachable scores.

The history of how this bug was discovered is really
interesting, and has been well documented in some
places on the internet ([1], [6]). It was possible mainly
because of the appearance of a very easy intermediate
board, which quickly became known as the dreamboard.
As it was enormously easy, it was almost impossible not
to get an excellent time, and many people broke their
records on it. By comparison, those people noticed their
records were achieved in the same board. Later, as
videos started to become popular, people noticed that
the boards preceding the dreamboard were also always
the same, and then the idea of a cycle was fully formed.

Indeed, there is some evidence that some people
have studied extensively this bug in the past, most of
them active players. There is also evidence that some
people did use this knowledge to cheat ([1], [5], [6]). So,

not everything in this article is new content for some
people, but certainly it is for the general public.

This article presents the results of a research made in
2004 and the discoveries acquired from it, as well as a
possible explanation for the reason of this bug, based on
the essential nature of pseudo-random number
generators.

2. Board collecting process

2.1. Generating the database

The first step to start researching was to capture, or
collect, all the boards of the cycle in a database. The
approach of this was to click several squares on a board,
until hitting a mine, revealing the positions of all of
them. After that, these positions (columns and rows) are
noted, and a new game is generated by pressing F2, or
by clicking the smiley button. And the process is
repeated thousands of times.

Of course a computer program was made for this
purpose. It could emulate mouse clicks on the screen
without having to physically move the mouse, or press
its buttons. It was necessary to let the windows of both
Minesweeper and this “collector” program (it was not
properly named) completely visible on the screen. Then it
was necessary to “initialize” it, providing the board
width and height in squares, as well as the coordinates
of the Minesweeper window, in pixels, relatively to the
top-left corner of the screen.

It was programmed to perform the following
sequence of actions repeatedly:

Accepted 23 September 2006

1

A possible explanation for the Board Cycle bug of Microsoft Minesweeper – Camargo, R. S. – Planet-Minesweeper.com

1. Click the smiley button to generate a new board;
2. Click every square of the board, in the order of

normal reading, that is, starting from the top-left
corner and going to the right, until clicking all the
squares of the row, then going to the next row,
until reaching the bottom-right square;

3. Emulate the pressing of the PrintScreen key;
4. Paste the copied image in its own window;
5. Analyze the captured screenshot, and extract the

positions of all mines;
6. Save the board to the database.

The program was left running like that until stopped
manually, some hours later. After stopping it and looking
for repeated boards in the database, it was able to
record the entire cycle more than twice. This information
was used to adjust the time the program was left
running in the following captures.

This process was repeated several times for both
beginner and intermediate boards. It was possible to
discover the existence of not only one, but two different
cycles for each level, with the following lengths:

• Beginner cycle 1: 24320 boards
• Beginner cycle 2: 24304 boards
• Intermediate cycle 1: 12096 boards
• Intermediate cycle 2: 12064 boards

These numbers were already known by some people
who have already studied board cycles in the past.
Additionally, the dreamboard is present on the
intermediate cycle 1, and was recorded in the database
as the board number 4232 of the 12096 in it.

2.2. Correction for the mine shift effect

The Microsoft version has an effect known as mine
shift: if the first click of the game is made on a square
containing a mine, this mine is going to be moved to the
first mine-free square starting from the top-left square
and counting to the right ([2], [3]). This is done to make
it impossible to hit a mine on the first click.

The method used previously to extract the location
of all mines – clicking systematically all the squares of
the board – certainly shifted the mines of the boards
that had originally a mine in the top-left corner.

So, before starting any analysis, all the four
databases had to go through a “correction” process.
Initially, it was necessary to open Microsoft
Minesweeper and manually click randomly until hitting
a mine to reveal all of them. Then, the revealed board
was identified and found in the database. This was a
kind of synchronization between the game and the
“collector” program.

Then, this program was slightly modified to perform
one click in the first opening found (not simply in the

first square) in the next board, counting from the
bottom-right square, and moving to the left. This was
only possible because it always knew the next board
that would be generated, due to the previous
synchronization with the game. After this opening was
hit, the board was safe from being altered by the effect
of mine shift. Being sure of it, the program worked as
usually, clicking systematically all the squares of the
board, to hit one and identify the position of all mines.
Then the board was captured and saved to a new,
corrected, database.

This “correction” process was a really tough part of
the research, long and boring. Of course it could have
been avoided, by modifying the board collecting process,
in a number of ways.

2.3. Ethics

None of these databases, neither the “collector”
program were published in any way, and will not be
published. Doing it would ruin the fun of the game, and
would make it very easy for cheaters to claim valid
scores on invalid games.

Any possible public exposition of these databases or
development of programs such as “trainers”, based on
what is in this article, is a strongly disencouraged and
disapproved attitude.

(a)

(c)(b)

Figure 1. A “strange” board is formed by mines taken
from two consecutive boards of the cycle.

 2

A possible explanation for the Board Cycle bug of Microsoft Minesweeper – Camargo, R. S. – Planet-Minesweeper.com

3. Analysis of the boards

3.1. Convergence of the first boards generated

One of the first curious facts of the analysis
appeared when trying to identify a random board of the
game in the database. Sometimes, a board appearing on
the game could not be found in the database, possibly
indicating that a board outside the cycle was found.

However, after giving out searching for this “new”
board, and generating some more boards, it became easy
to find one of them in the database. After closing
Minesweeper and opening it again, the same
phenomenon showed up: the first boards generated by
the game seemed not to exist in the database, but after
generating a reasonable number of them, all of the

subsequent existed.

After studying those “strange” initial boards in more
details, it was possible to notice that they were not
exactly new: some of its mines matched to a board in
the database, and the other mines matched to the board
following that one, in the database.

Figure 1 (a) shows one of these “strange” boards.
Some mines are artificially colored yellow, and some are
colored blue. Figure 1 (b) and (c) show two consecutive
boards of the database of the beginner cycle 2. The first
has 4 of its mines colored yellow, and the second one
has 6 mines colored blue, matching the ones on (a). It is
easy to see that the board in (a) is actually a mixture of
the boards (b) and (c).

The next board generated after the one in figure 1
(a) also showed to be formed by the remaining 4 mines

(a) (b) (c)

(d) (e) (f)

Figure 2. The sequence of boards that show up with the experiment of suddenly changing the level to beginner compared
to the normal sequence of boards of the cycle.

 3

A possible explanation for the Board Cycle bug of Microsoft Minesweeper – Camargo, R. S. – Planet-Minesweeper.com

 4

of figure 1 (c) – the ones not “borrowed” – and by 6
mines of the board following that one in the database.
And so on.

Also interesting is what happens with the number of
mines “borrowed” from each board to make a “strange”
board. The example of figure 1 used 4 mines from a
board and 6 from the following one. As more boards are
generated, this rate changes gradually. The number of
mines used from the “previous” board tends to decrease,
while the number of mines used from the “next” board
tends to increase.

It seems that the way Microsoft Minesweeper
generates boards leads to a kind of “convergence”. The
first boards generated after loading the game seem to
be formed by a mixture of two consecutive boards of the
database, but, as more and more boards are generated,
they “converge” to the boards of the cycle, and once

entering it, it never gets out.

3.2. Order of the mines in a board

One of the experiments made to check the behavior
of the convergence to the cycles was the following:

After changing the level to intermediate and
pressing F2, to generate new games, several hundreds of
times (actually by keeping it pressed for some seconds),
it can be assumed that the game will be inside one of
the two cycles. Then, what would happen after changing
the level to beginner and then right after back to
intermediate again? Will the game continue in the cycle
or not?

The answer, after performing this experiment, is no.
Apparently, another “strange” board was formed as
result. Then, pressing again F2 several times made the

(a) (b) (c)

(d) (e) (f)

Figure 3. The sequence of boards that show up with the experiment of suddenly generating custom intermediate boards
with 10 and 11 mines.

A possible explanation for the Board Cycle bug of Microsoft Minesweeper – Camargo, R. S. – Planet-Minesweeper.com

game converge back to the cycle, as if the game was
closed and loaded.

Figures 2 (a), (b) and (c) show the sequence of boards
obtained for the experiment. Figures 2 (d), (e) and (f)
show the sequence of boards that would appear if F2
was simply pressed, without changing the level to
beginner. So, (d), (e) and (f) are three consecutive boards
of the cycle.

The interesting thing is that the out-of-the-cycle
board on (c) has 30 mines and 10 mines in common with
the inside-the-cycle boards on (e) and (f), respectively.
These mines are artificially colored yellow and blue, also
respectively.

From this, it can be deducted that, after changing
the level to beginner, the “first 10” mines of the next
“normal” board (e) were used to build the beginner
board (b). Also, after changing the level back to
intermediate, the “next 30” mines of board (e) and the
“first 10” mines of board (f) were used to build the
“strange” board (c).

This idea of “first” and “next” mines of a board
means that the mines of every board can be put in a
kind of order.

Another possible experiment is to repeat the
previous one, but, instead of suddenly changing the level
to beginner, generate a custom intermediate board with
10 mines. A similar result will occur, shown in figure 3
(a), (b) and (c): the next board generated with 40 mines
(c), will also be formed by the last 30 and the first 10
mines of the boards in figures 2 (e) and (f), respectively.

Another interesting thing is that the custom board
on figure 3 (b) is formed exactly by the mines not

colored yellow of figure 2 (e). This confirms that these
mines were really the “first” mines of the latter board.

Figure 3 (d), (e) and (f) show the resulting sequence
of generating a custom board with 11 mines. The board
of figure 3 (e) is generated by the first 11 mines of
figure 2 (e). The next board generated with 40 mines is,
then, formed by the last 29 and the first 11 mines of the
boards in figures 2 (e) and (f), respectively.

The difference between the figures 3 (b) and (e) is
only one mine, colored yellow in (e). This mine can be,
then, labeled as the “eleventh” mine of the original
board on figure 2 (e). It is interesting to note that this
same mine (also colored yellow) appeared on figure 3
(c), but did not appear on (f), because it was “taken”
from it to complete the 11 mines of (e). Finally, the
“eleventh” mine of figure 2 (f) was taken to be the last
mine (colored blue) of the board of figure 3 (f).

Similarly, but generating custom boards with 12, 13,
or any other number of boards allows to “number” all
the mines of the board of figure 2 (e). And this can be
extrapolated to number all the mines of every board of
the cycle. The infinite cycle of boards can be then
understood as actually an infinite cycle of mines, which
can be grouped in any sequence, in the order they
appear, to form boards with any number of mines.

3.3. How each mine of the cycle is shown on boards
with beginner and intermediate sizes

The board of figure 2 (d) can have all of its mines
numbered. If, instead of being used to generate a board
with 40 mines, these mines were used to generate a
custom intermediate board with 10 mines, it would be
simple to know how it would look: it would be formed
by the first 10 mines out of these 40 mines, as can be

(a) (b) (c)

Figure 4. The apparent way the first 10 mines of an intermediate board are used to generate a beginner board.

 5

A possible explanation for the Board Cycle bug of Microsoft Minesweeper – Camargo, R. S. – Planet-Minesweeper.com

seen in figure 3 (b).

But what would happen if these mines were used to
form a beginner board, also with 10 mines? How would
the first 10 mines of that intermediate board be
arranged in a beginner board, since they have different
sizes?

Actually, this has been done on figure 2 (b), and the
answer to this question comes quickly, after using these
10 mines to generate custom beginner boards with
increasing number of mines from 1 to 10, and observing
their locations.

The result is that the mines originally located in the
first 8 rows and 8 columns of the intermediate board
appeared in the beginner board in the same places. And,
curiously, the mines originally located outside the top-
left 8x8 squares of the intermediate board appeared in
the corresponding squares of the beginner board, as if
the original board was divided in 4 “quadrants”, and as if
these quadrants were superposed.

Figure 4 illustrates that. Shown in (a) is the original
board of the cycle, equal to the one on figure 2 (e), but
with the first 10 mines colored yellow. These 10 mines
are shown isolated on (b). Still on (b), the board is
divided in 4 quadrants of 8x8 squares, and the mines on
each quadrant are colored differently. If these 4
quadrants are superposed, the board of (c) is formed (the
colors are preserved to maintain their relative positions).
Then, comparing this to figure 2 (b), it is possible to see
that they are equal.

This is a somewhat curious effect, because it is so
well structured that, at first sight, seems to have been
made on purpose by the author of the game. However, it
is very improbable that this behavior would be coded
inside the game, because beginner and intermediate are
not the only levels of the game, and doing a code to deal
with such a particular case of the game is not a
common practice for programmers. On the contrary, this
behavior suggests that it comes naturally, as a result of
some part of the program of the game.

3.4. Determinant factor for existence of cycles

Although beginner and intermediate levels do have
cycles, it is still not clear why cycles do not seem to
exist on expert level. While the board size of beginner
and intermediate levels are 8x8 and 16x16 squares
(multiples), expert size is 16x30. Also, while beginner
and intermediate levels have 10 and 40 mines (also
multiples), expert has 99.

The two main suspects for that can be then the
board size and number of mines. In an attempt to check
if the number of mines is the responsible, the “collector”
program was used again. However, attempts were made
to find cycles on custom boards with different number
of mines, and the results are shown on table 1.

Table 1. Relation between different number of mines
and cycle length.

Board (height x width) Mines Cycle length
8x8 10 24320
8x8 20 11016
8x8 40 4256

16x16 10 51496
16x16 20 25224
16x16 40 12096
16x16 80 5504
16x16 99 4216
16x16 120 3272
16x16 139 2640
16x16 160 2088

Apparently, the number of mines does not seem to

be determinant for the existence or not of cycles, since
all of them did show cycles.

 Although not extensively studied, some tests were
also made for variable board sizes. The results are shown
in table 2.

Table 2. Relation between different board sizes and
cycle length.

Board (height x width) Mines Cycle length
16x8 40 11016
16x8 80 4232

8x16 40 11016
8x16 80 4216

12x12 40 -
24x24 90 -

16x24 200 -
24x16 200 -

These results deserve special attention. Rectangular

16x8 and 8x16 boards did show cycles. So, the fact that
the expert board is not square can not be a reason for
the inexistence of expert cycles. Also, the square 12x12
and 24x24 boards did not show cycles. So, the fact that
the beginner and intermediate boards are squares can
not be a reason for the existence of beginner and
intermediate cycles.

Interestingly, rectangular 16x24 and 24x16 boards
did not show cycles. These sizes were chosen to test if
the dimensions of a board must be multiples of 8 for the
presence of cycles, and apparently this is not true. The
next test would be if board dimensions must be powers
of two for the presence of cycles. So, the next tests
would involve boards with 8x32, 32x8, 16x32, 32x16 or
32x32 squares, but any dimension greater than 30 mines
seems to be unreachable for Microsoft Minesweeper,
even using tricks, like editing the registry, etc.

 6

A possible explanation for the Board Cycle bug of Microsoft Minesweeper – Camargo, R. S. – Planet-Minesweeper.com

So, these results, although very inconclusive, only
suggest that the board size determines the existence or
inexistence of cycles, not the number of mines. Probably
this explains also why beginner boards of the Windows
XP version of Microsoft Minesweeper (which have 9x9
squares, instead of 8x8) do not have any known cycle.

4. A possible explanation

4.1. Pseudo-random number generators

It is first necessary to understand how pseudo-
random number generators work. These numbers are not
truly random. They are just results of calculations that
depend on one or more previously generated numbers.

This dependence results in two known effects that
occur in all PRNG’s: the need for a kind of
“initialization”, or seed; and the occurrence of cycles.

Typically, computers use the CPU internal time as the
seed. This is sufficiently good for most applications. The
real “problem” is the occurrence of cycles, because this
can be potentially dangerous for programs that depend
on good randomization, like Minesweeper.

This is basically the fact that after generating
millions of numbers, all PRNG will eventually repeat the
same sequence, entering an infinite loop. With luck, the
amount of numbers in the cycle “length” is huge enough
that users of programs will not notice the existence of a
cycle. Unfortunately, this was not the case concerning
Microsoft Minesweeper.

A good analogy is to compare the numbers
generated with the ring of dots shown in figure 5. The
arrow indicates the number that will be returned by the
PRNG in the next time it is called. As a number is
returned, the arrow advances one position in the clock-
wise direction, and stays waiting for the next call.
Eventually, the arrow will complete a full rotation, and
the same sequence of numbers will be returned.

The “initialization” of a PRNG basically changes the
arrow position to a new position in the ring, determined
by the seed. This new position can generally be
considered better randomized, since the seed depends on
a physical value (the CPU internal time, normally). This
works well, and some programs do it only once, when
loaded. This way, every time the program is loaded, the
arrow starts at a given position, and the sequence of
numbers can be taken from the position of the arrow,
and ahead.

This analogy is good to state that the quantity of
numbers that a given PRNG can generate is finite. Also,
the chance of getting the same number twice, after
initializing a PRNG several times, is reduced if this
quantity is very big. This quantity is called the period of
the PRNG.

Typically, those numbers generated also lie within a
range, and usually it is between 0 and 1, including 0 and
excluding 1. An example of a possible output for several
requests for random numbers can be, for example:

0.705548
0.533424
0.579519
0.289563
0.301948
0.774740
0.014018
0.760724
0.814490
0.709038
(…)

4.2. Using random numbers to place mines

One possible way to acquire mine coordinates from
these numbers, for an intermediate board, would be
calculating)x16int(1 ⋅+ , where x is each random
number. Grouping these values at every two, they can be
used as the coordinates of a mine in the board, as the
example of table 3.

Table 3. Conversion of random numbers into
coordinates for the mines.

x
)x16int(1 ⋅+

Coordinates (column, row)

0.705548 12
0.533424 9

(12, 9)

0.579519 10
0.289563 5

(10, 5)

0.301948 5
0.774740 13

(5, 13)

0.014018 1
0.760724 13

(1, 13)

0.814490 14
0.709038 12

(14, 12)

(…) (…) (…)
Figure 5. Each number generated by a PRNG can be

compared in analogy to a dot placed in a ring.

 7

A possible explanation for the Board Cycle bug of Microsoft Minesweeper – Camargo, R. S. – Planet-Minesweeper.com

In the same way, calculating would
convert the random numbers to the range from 1 to 8,
making the resulting coordinates suitable for filling a
beginner board, for example.

)x8int(1 ⋅+

This algorithm for placement of mines uses two
random numbers to place one mine. Of course there are
other algorithms that can place one mine using only one
number, or even algorithms that can place several mines
with one number.

However, the usage of two numbers for each mine
explains the existence of exactly two cycles for each
level, and not only one, or even more. In other words,
this algorithm is able to explain why the number of
cycles for each level is exactly two.

The understanding of it is simple: if the initialization
of the PRNG places the “arrow” over, for example, the
number in the second line of table 3 (0.533424), then
the coordinates of the generated mines will be (9, 10),
(5, 5), (13, 1), (13, 14), and so on. More generally, if the
“arrow” is placed over the number of any odd line of
table 3, one sequence of mines will be generated; if over
the number of any even line, another sequence will be
generated. These two different sequences of mines will
generate two different sequences of boards.

4.3. The convergence effect and “mixed” boards

It will be easier to understand the convergence
effect by analyzing a super-smaller-scale example. A
good PRNG has a huge period, and is capable of
generating an enormous amount of uniquely different
numbers – even though these are not really random, and
are cycled.

However, it is possible to imagine a very poor PRNG,
with a period of only 40 numbers. This PRNG is able to
generate only 40 unique numbers between 0 and 1. If it
is called for the 41st time, it will return the same
number it returned in the first time, entering a cycle of
only 40 numbers.

If this poor PRNG is put to generate boards with 8x8
squares and 5 mines, it would be necessary to calculate

 for each random number x. This would
convert the 40 numbers into 40 coordinates. After this
conversion, it is possible to suppose that the 40
coordinates that the PRNG is able to generate are:

)x8int(1 ⋅+

6–3–8–6–3–2–4–5–7–2–
3–6–4–1–1–8–7–2–8–3–
4–1–7–2–8–5–6–7–3–4–
7–1–5–1–5–8–4–2–6–5–

The last “–“ sign in the end of the sequence is to
indicate that it starts again by returning to the first
number. It is important to notice that this sequence is

well-distributed, since there are exactly five occurrences
of each number from 1 to 8.

Now, supposing that the “arrow” starts at the first
number of the period, it would be necessary to take the
first 10 numbers to place the 5 mines of the board. After
generating the first board, the “arrow” would be at the
11th number, waiting for the next call for a random
number. Similarly, generating another board would
require the sequence from the 11th to the 20th random
number to be used. And generating a third and a fourth
board would use the remaining numbers. These four
boards are shown in figure 6.

Notice that if a new board is generated after the
fourth board, the first one would appear again. So, the
four boards of figure 6 are in an infinite cycle.

Now, what would happen if the initialization of the
PRNG placed the “arrow” over the 7th number of the
sequence? The same process would be used, and the new
sequence of boards is displayed in figure 7. It is
important to mention that when the random numbers
place a mine over a square that already has a mine, it is
simply skipped.

The interesting thing if that the board generated on
figure 7 (f) is equal to the board on figure 6 (c). So, the
next one would be equal to the one on figure 6 (d), and
the cycle depicted in figure 6 would restart. This means

6–3–8–6–3–2–4–5–7–2–
3–6–4–1–1–8–7–2–8–3–
4–1–7–2–8–5–6–7–3–4–
7–1–5–1–5–8–4–2–6–5–

(a)

6–3–8–6–3–2–4–5–7–2–
3–6–4–1–1–8–7–2–8–3–
4–1–7–2–8–5–6–7–3–4–
7–1–5–1–5–8–4–2–6–5–

(b)

6–3–8–6–3–2–4–5–7–2–
3–6–4–1–1–8–7–2–8–3–
4–1–7–2–8–5–6–7–3–4–
7–1–5–1–5–8–4–2–6–5–

(d)

6–3–8–6–3–2–4–5–7–2–
3–6–4–1–1–8–7–2–8–3–
4–1–7–2–8–5–6–7–3–4–
7–1–5–1–5–8–4–2–6–5–

(c)

Figure 6. A sequence of 40 coordinates that leads to a
cycle of 4 custom beginner boards with 5 mines.

 8

A possible explanation for the Board Cycle bug of Microsoft Minesweeper – Camargo, R. S. – Planet-Minesweeper.com

that figure 7 shows a sequence of boards that converge
towards the cycle of figure 6.

Also, the boards on figures 7 (a) to (e) are mixtures
of the boards on figure 6. The board on figure 7 (a) is
composed of 2 mines taken from the first board of the
cycle and 3 mines taken from the second. The sequence
of figure 7 starts to converge, and at a given point, on
figure 7 (c), 1 and 4 mines are taken from two
consecutive boards of the cycle. Finally, on figure 7 (f),
all mines of a board of the cycle are taken to form a
single board, and the convergence is complete.

Similarly, it is possible to start generating boards
with the “arrow” in any of the 40 coordinates generated
by this poor PRNG. Doing it with the “arrow” initially on
an odd position will always converge to the cycle of
figure 6. However, doing it with the “arrow” initially on

an even position will converge to a second cycle,
different from the one on figure 6, but also made of 4
boards. And, of course, in the same way, this second
cycle can also be achieved through convergence.

In this example, the largest sequence of boards that
converge to the “odd cycle” is 11 boards, if the “arrow”
is initially placed in the 23rd or 25th position. The
largest sequence of boards that converge to the “even
cycle” is 12 boards, if the “arrow” is initially placed in
the 36th position.

It is possible to use these same 40 numbers to
generate boards with different number of mines. For
example, if used to generate boards with 10 mines, this
PRNG would generate two cycles of 9 boards, one for
“odd” and one for “even” initial positions, and also with
the convergence effect.

Now it is interesting to forget this super-smaller-
scale example, and consider what happens with real
dimensions. Instead of using only 10 random numbers to
place mines on a board, a real beginner board requires at
least 20, and a real intermediate board requires at least
80 random numbers. Also, the PRNG of Microsoft
Minesweeper is obviously not capable of generating only
40 unique numbers, but probably several millions.
Finally, skipping mines, as was the case twice on figure
7, becomes enormously more frequent. It is not difficult
to realize that the skipping of mines explains the
difference in the lengths of both cycles.

6–3–8–6–3–2–4–5–7–2–
3–6–4–1–1–8–7–2–8–3–
4–1–7–2–8–5–6–7–3–4–
7–1–5–1–5–8–4–2–6–5–

(a)

6–3–8–6–3–2–4–5–7–2–
3–6–4–1–1–8–7–2–8–3–
4–1–7–2–8–5–6–7–3–4–
7–1–5–1–5–8–4–2–6–5–

(b)

4.4. Possible correction for the conversion of random
numbers into coordinates

Up to now, the division of an intermediate board into
four quadrants to form a corresponding beginner board
is not explained.

6–3–8–6–3–2–4–5–7–2–
3–6–4–1–1–8–7–2–8–3–
4–1–7–2–8–5–6–7–3–4–
7–1–5–1–5–8–4–2–6–5–

(c)

6–3–8–6–3–2–4–5–7–2–
3–6–4–1–1–8–7–2–8–3–
4–1–7–2–8–5–6–7–3–4–
7–1–5–1–5–8–4–2–6–5–

(d)

Assuming that this effect was not made on purpose
by the author of the game, then it must appear
naturally. In other words, the same way the game
handles the mines should be applied to boards with both
beginner and intermediate sizes, and still result in the
“quadrant superposition” effect.

A hypothesis would be to slightly modify the formula
)xDint(1 ⋅+ to convert random numbers into

coordinates, where D is the width or the height of the
board, and x is a random number given by the PRNG.

6–3–8–6–3–2–4–5–7–2–
3–6–4–1–1–8–7–2–8–3–
4–1–7–2–8–5–6–7–3–4–
7–1–5–1–5–8–4–2–6–5–

(f)

6–3–8–6–3–2–4–5–7–2–
3–6–4–1–1–8–7–2–8–3–
4–1–7–2–8–5–6–7–3–4–
7–1–5–1–5–8–4–2–6–5–

(e)

One possible formula would be D mod)xNint(1 ⋅+ ,
where D and x are already explained and N is any
number sufficiently greater than D. Actually, the greater,
the better. The word “mod” stands for the rest of integer
division operator. For example, equals 1,
because the integer division of 7 by 3 gives 2 as result
and 1 as rest.

3 mod 7

Figure 7. A sequence of boards that can be generated
with these 40 coordinates, converging to the cycle.

 9

A possible explanation for the Board Cycle bug of Microsoft Minesweeper – Camargo, R. S. – Planet-Minesweeper.com

Table 4 gives the conversions of the same random
numbers on the first column of table 3 to beginner and
intermediate coordinates (with and 8D = 16D = ,
respectively). Also, as N can be any number, it was
arbitrarily chosen as 10000.

Table 4. Conversion of random numbers into
coordinates using a corrected formula.

x 8 mod)xNint(1 ⋅+ 61 mod)xNint(1 ⋅+
0.705548 8 16
0.533424 7 7
0.579519 4 4
0.289563 8 16
0.301948 4 12
0.774740 4 4
0.014018 5 13
0.760724 8 8
0.814490 1 1
0.709038 3 3

(…) (…) (…)

Grouping these coordinates at every two, it is
possible to build a beginner board and an intermediate
board, shown in figure 8 (a) and (b). As indicated by the
colors, this “corrected” version of the formula seems to
produce the same effect observed on Microsoft
Minesweeper.

This is not absolutely conclusive. It should be
observed that there is no way to prove that this
proposed modified formula is really being used.
However, the fact that the exact effect observed on the
actual game can be reproduced is evidence that at least
the operator mod seems to be used.

5. Conclusion

Of course there are still questions without answer,
even worthy of much more research, like, for example:

• What is the real reason for the board shift effect?
• How does the PRNG of Microsoft Minesweeper

work exactly? What are the minimum and
maximum values for the numbers returned? What
is its period?

• How exactly is the formula that converts random
numbers into coordinates?

However, much can be taken from this research.
Also, many tests were done since 2004, when this
research was done, and all of them seem to validate all
hypothesizes presented here.

REFERENCES

(a)
[1] Barry, D. (2004): David Barry. (personal profile)

http://www.planet-minesweeper.com/active-
ranking/David_profile.htm

[2] Bright, C. (2004): Minesweeper Bugs: 1 second theory.
http://www.geocities.com/brightprojects/mineswe
eper/1sectheory.html

[3] McGinley, M. (2002): 1 Second Theory.
http://inthalloffame.8m.com/1sectheory.html

[4] McGinley, M. (2002?): Same Boards.
http://inthalloffame.8m.com/sameboards.html

[5] McGinley, M. (2004): Matt McGinley. (personal profile)
http://www.planet-minesweeper.com/active-
ranking/Matt_profile.htm

[6] Moore, D. (2002): The board cycle and shifted boards.
http://www.metanoodle.com/minesweeper/DBcycle.h
tml

[7] Other internet links:
http://www.planet-minesweeper.com/
http://www.metanoodle.com/minesweeper/
http://www.dotti.at/ms/
http://en.wikipedia.org/wiki/Minesweeper_%28com
puter_game%29

* The author is also author of Minesweeper Clone, a known version of
Minesweeper, acceptable for records worldwide, and, of course, free of
board cycles. (b)

Figure 8. The simulated boards that reproduce the
“quadrant superposition” effect.

 10

