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Abstract 

Minesweeper is a popular single-player game 

included with Windows operating systems. Since 

Richard Kaye [12] proved that “Minesweeper is 

NP-complete” in 2000, it has been recently studied 

by many researchers. Meredith Kadlac [7] had 

showed that one-dimensional Minesweeper 

consistency problem is regular and can be recognized 

by a deterministic finite automaton. We extend the 

consistency problem to 2×n Minesweeper, which is 

two-dimensional but with its one dimension restricted 

to 2. We find that this problem is also tractable and 

design a finite automaton which can solve 2×n 

Minesweeper consistency problem in linear time. 

Hence, we are able to show that 2×n Minesweeper 

consistency problem is also in P. 

 

Keywords: Minesweeper, Minesweeper consistency 

problem, finite automata, P 

 

1 Introduction 
Minesweeper [10] is a single-player computer 

game which was invented by Robert Donner and Curt 

Johnson in 1989. The game has been rewritten for 

many computer platforms and is most famous for the 

version that comes with Microsoft Windows. 

 

The game consists of a rectangular field of 

squares much like a chess or checker board, and all 

squares are covered initially. Some mines are 

randomly and secretly distributed throughout the 

board. 

 

A player can uncover or mark any square by 

left- or right-clicking on it. If a covered square with a 

mine is left-clicked upon by a player, the mine would 

expose and the game is over. At the time, what a 

player should do is to try his/her best to guess where 

the mines are. If a player is sure that a mine is hidden 

under a square, he/she can mark (right-clicked once) 

that square. However, if he/she is not sure that a mine 

is hidden under a square or not, he can mark a 

question mark(‘?’) by right-clicking twice on that 

square instead. A player just uses the question mark 

to remind himself/herself that those squares are 

probably mines, but actually those squares are still 

covered squares.  

 

So we treat the ‘?’-marked squares and the 

covered squares as the same. If a covered square 

without a mine is left-clicked upon by a player, two 

possible results could happen. A number between 0 

and 8, indicating the amount of adjacent (including 

diagonally-adjacent) squares containing mines, would 

appear on this square. If the number 0 appears on the 

square, then all the squares reachable from this 

square will be uncovered and their amounts of 

adjacent squares containing mines will be appeared 

on these uncovered squares. The game is won when 

all squares without mines are uncovered. The goal of 

Minesweeper is to locate all mines (or “bombs”) 

without touching any square with a mine as quickly 

as possible. 
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The complexity class P is the set of languages 

accepted by deterministic Turing machines in 

polynomial time. And the class NP is the set of 

languages accepted by nondeterministic Turing 

machines in polynomial time. One famous open 

problem is "P=NP?" question: to determine whether 

there exists an efficient algorithm which can solve an 

NP-complete problem or alternatively to prove no 

efficient algorithm exists for these NP-complete 

problems. This is one of the biggest and most 

important open problems at this moment, and is the 

subject of a $1,000,000 prize offered by the Clay  

Math institute in the USA. Richard Kaye’s [12] result 

states that a decision problem called "Minesweeper 

Consistency Problem" (abbreviated as MCP) is 

equivalent to the problem of playing the 

Minesweeper game which is another NP-complete 

problems. That is, the problem of simply determining 

which squares are mines or not is equivalent to MCP. 

 

Meredith Kadlac [7] had showed that 

one-dimensional MCP is easy. One-dimensional MCP  

is the original problem with one dimension restricted 

to one. One-dimensional MCP Problem is regular and  

can be recognized by a deterministic finite 

automaton.  

 

In this paper, we will extend his work to 2×n 

MCP which is more complicated and difficult to be 

dealt with. 

 

This paper is organized as follows. In Section 

2, we describe some properties and definitions of 

MCP. Section 3 introduces a nondeterministic finite 

autom automaton (NFA) to solve 2×n MCP. In 

Section 4, we simplify the original NFA and discuss 

the corresponding DFA. In Section 5, we analyze 

the time to find consistent configurations. Section 6 

exhibits our conclusions. 

2 Properties and definitions of 
Minesweeper consistency problem 

What is Minesweeper Consistency Problem? Richard 

Kaye defined this problem. On the FAQ in his 

Minesweeper site [6] he said: 

“This is a question one can ask about any particular 

rectangular grid with the squares decorated by 

numbers 0-8, mines, or left blank. It asks: is there a 

configuration of mines in the grid that would result in 

the pattern of symbols one sees (according to the 

usual Minesweeper rules)? ” 

For the example of Figure 1(a), there is 
only one legal configuration of mines as 
shown in Figure 1(b). So we know this 
Minesweeper board is consistent, where “B” 
means a mine, “?” means an unknown 
square which could  
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Figure 1. (a) a given 4×4 Minesweeper board  (b) one legal configuration of mines for (a)  (c) an inconsistent 

Minesweeper board 

 



 

be a mine or a safe square, and a number 
between 0 and 8 means how many mines are 
in its surrounding squares. In Figure 1(c), 
there is an inconsistent square on the 
upper-right corner, for lacking one mine 
adjacent to it. 

 

In Richard Kaye’s article [12], “Minesweeper is 

NP-Complete”, he proved that MCP is NP-complete 

by reducing the circuit satisfiability problem to 

Minesweeper. Since the general two-dimensional 

MCP is NP-complete, and Meredith Kadlac [7] had 

proved one-dimensional MCP is tractable, we make 

an effort to extend the one-dimensional MCP to two 

dimensions but with one dimension restricted to two 

in this paper. Here we call this kind of problem as 

2×n MCP. 2×n Minesweeper game is a simplification 

version of the general Minesweeper game. However, 

it is more complex and difficult to prove the 

tractability than the one-dimensional one’s. There are 

lots of possible input patterns to be dealt with. 

Fortunately, we find a way to simplify the finite 

automaton to avoid the explosive growth of the 

possible configurations. As a result, we are able to 

show that 2×n MCP is also tractable. 

3 The 2×n Minesweeper 
Consistency problem 

On a 2×n Minesweeper board, there are squares 

decorated by numbers 0 to 5, mine-marked, or 

‘?’-marked squares (equivalent to covered squares). A 

configuration of a 2×10 Minesweeper board is shown 

in Figure 2(a). 

 

 
(a) 

 
(b) 

Figure 2. (a) and (b) are the same for the circled 

square “2” in the fifth column contributes the 

same unit to its surrounding squares. 

 
Of course, we can treat the 2×n and the n×2 

Minesweeper boards as the same, for just rotating the 

n×2 Minesweeper board. 

 

Definition 1: Given a 2×n Minesweeper grid with 

numbers and mines, some squares being covered, 

the 2×n Minesweeper consistency problem is to 

determine if there is a configuration of mines in 

those covered squares that give rise to the number 

seen.  

 

That means a 2×n Minesweeper puzzle is 

consistent if there exists at least one correspondence 

between the information in each square and mines or 

covered squares. Note that a Minesweeper puzzle is 

solved correctly if each square numbered with m is 

surrounded by exactly m mines. 

 

In this section, we will show that the 2×n MCP 

is tractable by exhibiting a nondeterministic finite 

automaton (abbreviated as NFA) which determines 

the consistency of any 2×n Minesweeper puzzle. 

 

We describe how the NFA be created to solve 

this problem first. A 2×n Minesweeper board can be 

B B
B 

B B 

B
B B 

B B 
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represented by a sequence of n symbols. Each symbol 

represents a column of the board and is a pair over 

the alphabets β={0, 1, 2, 3, 4, 5, B, ?}. For example, 

the board in Figure 2(a) can be represented by <”B1”, 

“11”, “??”, “??”, “B2”, “??”, “B2”, “3B”, “B2”, 

“11”>. A symbol may be “00”, “11”, “B?”, “??”, …, 

etc. There are 64 possible pairs as shown in Table 1. 

But with some interesting properties of 2×n 

Minesweeper, most pairs could be eliminated, and 

only 19 pairs left as shown in Table 2. One property 

is if both alphabets of the pair are numbers, they 

should be the same (such as ‘00’, ‘11’, ‘22’, ‘33’, 

‘44’) for each mine will contribute a same unit of 

count to both of its upper and lower squares in 

adjacent columns. That is, these two alphabets have 

the same impact on a 2×n Minesweeper board. 

Furthermore, some pairs like ‘0B’, ‘B0’, ’55’ are 

always inconsistent, so we can also eliminate these 

kinds of pairs.  

 

Table 1. All possible symbols for 2×n Minesweeper 

problem 

00 01 02 03 04 05 0B 0?
10 11 12 13 14 15 1B 1?
20 21 22 23 24 25 2B 2?
30 31 32 33 34 35 3B 3?
40 41 42 43 44 45 4B 4?
50 51 52 53 54 55 5B 5?
B0 B1 B2 B3 B4 B5 B5 B?
?0 ?1 ?2 ?3 ?4 ?5 ?B ??

 

Table 2. All legal symbols for 2×n Minesweeper 

problem 

00 0? 11 1B 1? 22 2B 2?
33 3B 3? 44 4B 4? 5B 5?
BB ?B ??      

 

In addition, alphabets of a pair can be 

exchanged with each other and will not affect the 

consistency result, so we just take account of one of 

the pairs. For example, if we exchange the two 

alphabets in the fifth column of Figure 2(a), we can 

get the other board as shown in Figure 2(b). A mine 

has already appeared above the circled square in 

Figure 2(a) and under the circled square in Figure 

2(b), so the circled squares of both boards contribute 

the same unit of count to their surrounding 

squares—only one mine in these unknown 

surrounding squares of both boards. Hence, we can 

treat Figure 2(a) and Figure 2(b) as the same board. 

 

Definition 2: A 2×n Minesweeper sequence of 

length n is a sequence of n symbols over the 

alphabet ∑={00, 11, 22, 33, 44, 1B, 2B, 3B, 4B, 5B, 

BB, ?B, 0?, 1?, 2?, 3?, 4?, 5?, ??}. 

 

Definition 3: A Minesweeper sequence is globally 

consistent if no local inconsistency is found in the 

Minesweeper sequence. 

 

The NFA takes a Minesweeper sequence of 

length n as input. The NFA is a 5-tuple (Q, Σ, δ, s0, F), 

where Q is a finite set of 43 states, i.e., 

Q={s0, ?0?0, ?B?B, ?BBB, BBBB, ?0?B, ?0BB, 0000, 00?0, 

1111, 11?0, 2222, 22?0, 1010, 10?0, 2121, 21?0, 3232, 32?0, 

21?B, 21BB, 32?B, 32BB, 43?B, 43BB, 11?B, 11BB, 22?B, 

22BB, 33?B, 33BB, 2020, 20?0, 3131, 31?0, 31?B, 31BB, 

4242, 42?0, 42?B, 42BB, 53?B, 53BB}. The set of input 

alphabet is Σ={00, 11, 22, 33, 44, 1B, 2B, 3B, 4B, 5B, 

BB, ?B, 0?, 1?, 2?, 3?, 4?, 5?, ??}. δ: Q × Σ → Q is 

the state transition relation. δ defines the rules for 

state moving. s0∈Q is the start state. F∈Q is the set of 

accepting states, F={s0, ?0?0, ?B?B,  ?BBB’, ‘BBBB’, 

‘?0?B’, ‘?0BB’, ‘0000’, ‘00?0’, ‘1111’, ‘11?0’, ‘2222’, 

‘22?0’, ‘11?B’, ‘11BB’, ‘22?B’, ‘22BB’, ‘33?B’, ‘33BB’}. 
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The states of the NFA have the form (XxYy), 

where “XY” means the input symbol, and the 

subscripts “x” and “y” indicate the information of 

mines for input alphabets X and Y. Table 3 explains 

the meaning of Xx (or Yy). Take a state ‘10?0’ for 

example, “1?” is the input symbol which causes the 

machine to go to this state. Looking into Table 3, we 

can know that for the input ‘1’, the subscript ‘0’ 

means that no mine appeared in this and the left 

columns, and the next column should have only one 

mine. Then for the input ‘?’, the subscript ‘0’ means 

that this ‘?’ is not a mine. Since no mine appeared in 

this column, so the next column must have one mine 

in order to keep consistency. The subscripts for those 

numbered squares reveal mine information—numbers 

of mines, and the subscripts “B” and “0” for 

‘?’-marked  squares reveal whether the ‘?’ is a mine 

or not. 

 

Table 3. Meaning of Xx (or Yy), where the subscript x for X 

Xx (or Yy) Meaning 
00 There is no mine adjacent to this column. 
10 There is no mine in this and the left columns, and the next 

column should have only one mine. 
11 There is totally a mine in this and the left columns, and 

the next column should not have any mine. 
20 There is no mine in this and the left columns, and the next 

column should have 2 mines. 
21 There is totally a mine in this and the left columns, and 

the next column should have only one mine. 
22 There are totally 2 mines in this and the left columns, and 

the next column should not have any mine. 
31 There is totally a mine in this and the left columns, and 

the next column should have 2 mines. 
32 There are totally 2 mines in this and the left columns, and 

the next column should have only one mine. 
33 There are totally 3 mines in this and the left columns, and 

the next column should not have any mine. 
42 There are totally 2 mines in this and the left columns, and 

the next column should have 2 mines. 
43 There are totally 3 mines in this and the left columns, and 

the next column should have only one mine. 
53 There are totally 3 mines in this and the left columns, and 

the next column should have 2 mines. 
?0 For the input alphabet ‘?’, the subscript ‘0’ means that 

this ‘?’ is not a mine. 
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?B For the input alphabet ‘?’, the subscript ‘B’ means that 
this ‘?’ is a mine. 

BB Input alphabet ‘B’ with the subscript ‘B’ means it is a 
mine. 

We consider all cases which are possibly 

happened in  

any 2×n Minesweeper board. Some state 

combinations are inconsistent such as ‘10BB’, ‘20BB’, 

‘101B’, ‘3242’, ‘4252’, …,etc. For the example of 

‘10BB’, “10” means that no mine has appeared in this 

and the left column, but “BB” means the square is a 

mine in this column, a contradiction. The cases ‘3242’ 

and ‘4252’ are inconsistent for the illegal input 

symbols, and ‘10BB’, ‘20BB’, ‘101B’ are inconsistent 

for their impossible occurrences. As we described 

before, if both alphabets of the input symbol are 

numbers, they should be the same. For the states, this 

property still holds. So we can not get states like 

‘101B’, ‘3242’, ‘4252’, ‘1B2B’, ‘4110’…, etc. In this way, 

we have totally 43 possible states in Q. 

 

Now we construct the 2×n MCP state transition 

relations as shown in Table 4, where state ‘s0’, ‘?0?0’, 

‘?B?B’, ‘?BBB’, ‘BBBB’, ‘?0?B’, ‘?0BB’, ‘0000’, ‘00?0’, 

‘1111’, ‘11?0’, ‘2222’, ‘22?0’, ‘11?B’, ‘11BB’, ‘22?B’, 

‘22BB’, ‘33?B’, and ‘33BB’ are accepting states. We use 

double circle to represent them in Table 4. If the NFA 

ends at any one (say, ‘kk?0’) of these accepting states, 

then there are totally k mines in the last two columns. 

We do not need extra mines to equalize the quantity 

k. 

 

2 ? 2 ? 
2 B 2 ? 

Figure 3. A 2×4 Minesweeper board 

Let us see how this NFA works. A 2×n 

Minesweeper board is given in Figure 3, and the 2×n 

Minesweeper sequence is represented as <“22”, “?B”, 

“22”, “??”>. Initially, the machine is in the start state 

s0 (in the state set q0) and the first input symbol is 

“22”, it goes to only one state ‘2020’ (in the state set 

q8). From the state ‘2020’, there is only one state 

‘?BBB’ (in the state set q2) to go on the next input 

symbol “?B”. The third input symbol is “22”, and the 

machine goes to the state ‘2222’ (in the state set q4). 

Then the machine will go to the state ‘?0?0’ (in the 

state set q1) for the fourth input symbol is “??”. The 

state ‘?0?0’ is an accepting state, so we know that this 

2×n Minesweeper board is consistent. 

 

Now let us see an easy 2×n Minesweeper board 

shown in Figure 4. The 2×n Minesweeper sequence is 

represented as <“22”>. Initially the machine is in the 

start state s0 (in the state set q0) and the first input 

symbol is “22”, and it will go to the state ‘2020’ (in 

the state set q8) which is a rejecting state. So we can 

know this board is not consistent.  

 

 

Figure 4. A 2×1 Minesweeper board 

Take another example, a 2×n Minesweeper 

board is shown in Figure 5. The 2×n Minesweeper 

sequence is represented as <“?B”, “2?”>. The 

machine is initially in the start state s0 (in the state set 

q0) and the first input symbol is “?B”, and then the 

machine will have two states ‘?0B

2
2

B’ and ‘?BBB’ to go. 

And the next input symbol is “2?”, so the machine 

will have 2 states ‘21?B’ and ‘22?B’ to go if it is from 

state ’?0BB’. The state ‘22?B’ is an accepting state. But 
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the state ‘21?B’ is a rejecting state because it needs an 

extra mine in the third column which is not present. 

On the other hand, if it is from the state ‘?BBB’, then 

the machine will go to an accepting state ‘22?0’. 

When the machine gets an input symbol consisting of 

one or two ‘?’s, it will have two or more paths to go. 

If the machine takes more and more inputs like these, 

it may have lots of possible paths to follow. Hence if 

we get a 2×n Minesweeper board with many inputs 

like “??”, “?B”, “BB”, “2?”, and etc., would the 

machine go to lots of states with explosive growth? 

In the follows, we will deal with this problem. 

 

 

 

Figure 5. A 2×2 Minesweeper board 

Table 4. The state transition relations for 2×n MCP NFA 

 0? 1? 2? 3? 4? 5? ?B ?? 00 11 1B 22 2B 33 3B 44 4B 5B BB

 s0 

  

00?0 10?0 

11?B 

20?0 

21?B 

31?B   ?0BB

?BBB

?0?0 

?0?B

?B?B

0000 1010 11BB 2020 21BB  31BB    BBBB

 
?0?0 

 

00?0 10?0 

11?B 

20?0 

21?B 

31?B   ?0BB

?BBB

?0?0 

?0?B

?B?B

0000 1010 11BB 2020 21BB  31BB    BBBB

?B?B   22?0 32?0 

33?B 

42?0 

43?B 

53?B 

 

?0BB

?BBB

?0?0 

?0?B

?B?B

   2222  3232 33BB 4242 43BB 53BB BBBB

?BBB   22?0 32?0 

33?B 

42?0 

43?B 

53?B 

 

?0BB

?BBB

?0?0 

?0?B

?B?B

   2222  3232 33BB 4242 43BB 53BB BBBB

 

BBBB   22?0 32?0 

33?B 

42?0 

43?B 

53?B 

 

?0BB

?BBB

?0?0 

?0?B

?B?B

   2222  3232 33BB 4242 43BB 53BB BBBB

?0?B  11?0 21?0 

22?B 

31?0 

32?B 

42?B 

 

 ?0BB

?BBB

?0?0 

?0?B

?B?B

 1111  2121 22BB 3131 32BB  42BB  BBBB

 
?0BB  11?0 21?0 

22?B 

31?0 

32?B 

42?B 

 

 ?0BB

?BBB

?0?0 

?0?B

?B?B

 1111  2121 22BB 3131 32BB  42BB  BBBB

0000 00?0 10?0 20?0     ?0?0 0000 1010  2020        

00?0 00?0 10?0 20?0     ?0?0 0000 1010  2020        

1111 00?0 10?0 20?0     ?0?0 0000 1010  2020        

11?0 00?0 10?0 20?0     ?0?0 0000 1010  2020        

 

2222 00?0 10?0 20?0     ?0?0 0000 1010  2020        

? 2 
B ? 

input 
state 

q0 

q1 

q2 

q3 

q4 
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22?0 00?0 10?0 20?0     ?0?0 0000 1010  2020        

1010  11?B 21?B 31?B   ?0BB ?0?B   11BB  21BB  31BB     

10?0  11?B 21?B 31?B   ?0BB ?0?B   11BB  21BB  31BB     

2121  11?B 21?B 31?B   ?0BB ?0?B   11BB  21BB  31BB     

21?0  11?B 21?B 31?B   ?0BB ?0?B   11BB  21BB  31BB     

3232  11?B 21?B 31?B   ?0BB ?0?B   11BB  21BB  31BB     

q5 

32?0  11?B 21?B 31?B   ?0BB ?0?B   11BB  21BB  31BB     

21?B   22?B 32?B 42?B  ?0BB ?0?B     22BB  32BB  42BB   
q6 

21BB   22?B 32?B 42?B  ?0BB ?0?B     22BB  32BB  42BB   

 0? 1? 2? 3? 4? 5? ?B ?? 00 11 1B 22 2B 33 3B 44 4B 5B BB

32?B   2

state 
input 

2?B 32?B 42?B  ?0BB ?0?B     22BB  32BB  42BB   

32BB   22?B 32?B 42?B  ?0BB ?0?B     22BB  32BB  42BB   

43?B   22?B 32?B 42?B  ?0BB ?0?B     22BB  32BB  42BB   
q6 

43BB   22?B 32?B 42?B  ?0BB ?0?B     22BB  32BB  42BB   

11?B  11?0 21?0 31?0    ?0?0  1111  2121  3131      

11BB  11?0 21?0 31?0    ?0?0  1111  2121  3131      

22?B  11?0 21?0 31?0    ?0?0  1111  2121  3131      

22?B  11?0 21?0 31?0    ?0?0  1111  2121  3131      

33?B  11?0 21?0 31?0    ?0?0  1111  2121  3131      

 

33?B  1

q7

1?0 21?0 31?0    ?0?0  1111  2121  3131      

2020       ?BBB ?B?B           BBBB

20?0       ?BBB ?B?B           BBBB

3131       ?BBB ?B?B           BBBB

31?0       ?BBB ?B?B           BBBB

31?B       ?BBB ?B?B           BBBB

31BB       ?BBB ?B?B           BBBB

4242       ?BBB ?B?B           BBBB

42?0       ?BBB ?B?B           BBBB

42?B       ?BBB ?B?B           BBBB

q8 

42BB       ?BBB ?B?B           BBBB
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53?B       ?BBB ?B?B           BBBB

53BB       ?BBB ?B?B           BBBB

As described before, we must care about the growth 

of possible moving paths in the NFA. Here we give 

another example. A 2×n Minesweeper board is given 

in Figure 6.  

 

2 ? 4 ? ? 
? ? ? B 2 

Figure 6. A 2×4 Minesweeper board 

The 2×n Minesweeper sequence is represented 

as <“2?”, “??”, “4?”, “?B”, “2?”>. In the NFA, the 

machine will have 4 possible moving paths according 

to the state transition relations of Table 4. 

Initially the machine on the input symbol “2?” has 

two possible states ‘20?0’ and ‘21?B’ to go. The 

machine in the state ‘20?0’ will go to the state ‘?B?B’ 

while reading the input symbol “??”. The machine in 

the state ‘21?B’ will go to the state ‘?0?B’ while 

reading the input symbol “??”. If the machine goes to 

the state ‘?B?B’ and reads the next input symbol ‘4?’, 

then it splits again and gets two possible states ‘42?0’, 

‘43?B’. On the other hand, if the machine goes to the 

state ‘?0?B’ and reads the input symbol “4?”, then it 

can only go to the state ‘42?B’. The next input symbol 

is “?B”, the machine will go to the state ‘?BBB’ if it is 

from states ‘42?0’ or ‘42?B’, or go to the state ‘?0?B’ if 

it is from the state ‘43?B’. The machine in the state 

‘?B?B’ reads the final input symbol “2?” will go to the 

state ‘22?0’. On the other hand, the machine in the 

state ‘?0?B’ will have 2 states ‘21?0’ or ‘22?B’ to go. 

But the state ’21?0’ is a rejecting state because it 

needs an extra mine in the next column which is not 

present. So only 4 possible paths are consistent. See 

below for a depiction. 

 

 s0 20?0 ?B?B 42?0 ?B?B 22?0   

(accepting state) 

 s0 20?0 ?B?B 43?B ?0?B 21?0   (rejecting 

state) 

 s0 20?0 ?B?B 43?B ?0?B 22?B   

(accepting state) 

 s0 21?B ?0?B 42?B ?B?B 22?0   

(accepting state) 

Since the rules of transitions only depend on 

the number information of mines between current and 

the previous columns as well as the next input 

symbol, the NFA can correctly reach an accepting 

state or a rejecting state. 

 

4 Simplified NFA and DFA for 
2×n MCP 

According to the state transition relations 

shown in Table 4, we find that some states have the 

same behavior in the table, so we can combine these 

states to a new state set. Then we can get 8 equivalent 

state sets. 

 q0 = {s0}, q0 is the start state set. 

 q1 = {?0?0} 

q1 is the state set which means no mine is 

present in this and the left columns. 

 q2 = {?B?B, ?BBB, BBBB} 

q2 is the state set which means 2 mines are 

present in this and the left columns.  

 q3 = {?0?B, ?0BB} 

q3 is the state set which means only one mine is 

present in this and the left columns. 

 q4 = {0000, 00?0, 1111, 11?0, 2222, 22?0}, 

q4 is the state set which means 2 numbered 

squares (the 2 numbers are the same) are 

present in this column, and they do not need 

extra mines to equalize them. 
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 q5 = {1010, 10?0, 2121, 21?0, 3232, 32?0}, 

q5 is the state set which means 2 numbered 

squares (the 2 numbers are the same)  are 

present in this column, and they need one extra 

mine to equalize them. 

 q6 = {21?B, 21BB, 32?B, 32BB, 43?B, 43BB}, 

q6 is the state set which means a numbered 

square and a mine are present in this column, 

and the number square needs one extra mine to 

equalize it. 

 q7 = {11?B, 11BB, 22?B, 22BB, 33?B, 33BB}, 

q7 is the state set which means a numbered 

square and a mine are present in this column, 

and the number square does not need extra 

mines to equalize it. 

 q8 = {2020, 20?0, 3131, 31?0, 31?B, 31BB, 4242, 42?0, 

42?B, 42BB, 53?B, 53BB }, 

q8 is the state set which means 2 numbered 

squares are present, and they need two extra 

mines to equalize them. 

After combining those states, we can get a 

simplified state transition table as shown in Table 5, 

where there are 6 accepting states: q0, q1, q2, q3, q4, 

and q7.  

The state transition diagram is shown in Figure 

7. Since it is an NFA— several choices may exist for 

the next state for some inputs. For example, when the 

machine goes to the state set ‘q3’ with the next input 

‘??’, the machine will have three possible state sets q1, 

q2 or q3 to go. According to computation theory [8], 

we have the following theorem.  

  

Theorem 1: An NFA has an equivalent 

deterministic finite automaton. 

 

Deterministic and nondeterministic finite 

automata recognize the same class of languages. Such 

equivalence is both surprising and useful. Now we 

are certainly able to find an equivalent DFA for the 

NFA we constructed for 2×n MCP. 

 

 

Table 5. Simplified state transition Table for 2×n MCP NFA 

input 

state 
sets 

1? 2? 3? 4? ?B ?? 00 0? 11 1B 22 2B 33 3B 44 4B 5? 5B BB

q0 q5 

q7 

q6 

q8 

q8  q2 

q3 

q1 

q2 

q3 

q4 q4 q5 q7 q8 q6  q8      q2

q1 q5 

q7 

q6 

q8 

q8  q2 

q3 

q1 

q2 

q3 

q4 q4 q5 q 7 q8 q6  q8     q2

q2  q4 q5 

q7 

q6 

q8 

q2 

q3 

q1 

q2 

q3 

    q4  q5 q7 q8 q6 q 8 q 8 q2

q3 q4 q5 

q7 

q6 

q8 

q8 q2 

q3 

q1 

q2 

q3 

  q4  q5 q7 q8 q6  q8   q2

q4 q5 q8    q1 q4 q4 q5  q8         
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q5 q7 q6 q8  q3 q3    q7  q6  q8      

q6  q7 q6 q8 q3 q3      q7  q6  q8    

q7 q4 q5 q8    q1   q4  q5  q8       

q8        q2 q2             q2

Theorem 2: 2×n MCP is in P. 

Proof:  The equivalent DFA can determine 2×n 

MCP in O(n) time, for the DFA takes linear time to 

scan a 2×n Minesweeper board. So we proved that 

2×n MCP is in class P. 

q6

q5

q8

??

??

                             ??

  ??

        
        

       ?
?

?B, ??

?B
, ?

?, 
BB

2?, 3
?, 2

2, 3
B

?B
, ?

?,
 B

B

4?
, 4

4,
 5

?, 
5B

2?, 22

2?
, 2

B

2?, 22

?B, ??, BB

1?, 1B

2?, 3?, 22, 3B

        ?B, ??, BB

?B, ??, BB

?B, ??

?B, ??

1?, 11

2?, 22

2?, 22

3?, 33

?B, ?? ?B, ??

00, 0?

00, 0?

1?, 11

3?, 3
B

3?
, 4

?,
 3

3,
 4

B

1?, 1B

2?, 2B

4?, 4B

3?, 3B

2?, 2B

2?
, 2

B

1?
, 1

1

1?, 1B

3?, 33

??

1?, 11 3?, 3B

?B, ??
4?, 4B

1?, 11

2?, 2B

00, 0?

q0

q1

q2

q3 q4

q7

Figure 7. Simplified state transition diagram for 2×n MCP NFA 

 

5 Finding consistent 
configurations 

For the example of Figure 6, we can find 4 

consistent configurations as shown in Figure 9 

according to the possible state transition paths as 

shown in Figure 8. Note that there are only three 

accepting states, but there are two possible 

configurations ‘?0?B’ and ‘?B?0’ for the second 

column in the lowest path of Figure 9, hence we have 

totally 4 consistent configurations. 
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When the DFA determines that a Minesweeper 

sequence is consistent, it passes the state sets which 

include all possible consistent configurations for all 

input symbols. In order to find these consistent 

configurations, we use the depth-first search to 

traverse the search tree whose search space is the 

possible state sets. We can find all consistent 

configurations after finishing depth-first search, so it 

may take exponential time to find all consistent 

configurations which is equal to the time to do 

depth-first search. However, if we only want to find a 

consistent configuration, it only takes O(n) time to 

walk on any path of the search tree from the root to a 

leaf node. 

 

s0

2?

21?B

20?0

2?

?? ?B?B

?? ?0?B 42?B

4?

4?

42?0

43?B

4?

?B

?B

?B

22?B

22?0

22?0

?BBB

?0BB

?BBB

?2

?2

?2

21?0

?2

?0?B or
?B?0

Figure 8. The possible state transition paths for Figure 6 

 
    

Figure 9. All consistent configurations for Figure 6 

 
6 Concluding remarks 

In this paper, we extend Meredith Kadlac’s 

one-dimensional MCP [7] to 2×n MCP which is more 

complex and difficult to be dealt with. According to 

the properties of 2×n Minesweeper game, we analyze 

all possible input symbols, states, and state transitions 

and successfully construct an NFA which can 

determine the consistency of 2×n MCP. We further 

simplify the original 43 states to 8 state sets 

according to their behavior. Then we can convert this 

NFA to a corresponding DFA which also takes linear 

time to solve 2×n MCP. Hence we proved that 2×n 

MCP is tractable and in class P.  

 
B 
B 

B
B

B 
B B B B B B B B

B

 B
B 

B B 
B 
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When we know a 2×n Minesweeper board is 

consistent, we may spend exponential time expanding 

the search tree to find all consistent configurations for 

that board or spend linear time walking on any path 

of the search tree from the root to a leaf node.  

 

The topics of “Minesweeper consistency 

problem” are worth studying further in the future. 

Furthermore, we hope that we can extend the 

problem to more general problems and try to prove 

the complexity of these kinds of problem. Because 

Richard Kaye has proved general MCP is 

NP-complete, we may devote to find a number m 

which causes m×n MCP to be NP-complete.  

 

Let us consider another problem. The 

complexity of 2-SAT belongs to P, which means we 

can find a NFA with finite states to solve it. However, 

3-SAT is NP-complete, which means no NFA can be 

found to solve 3-SAT at the present time. That is to 

say, we even cannot derive all accepting patterns to 

form a correct NFA. In this paper, we are able to 

show that 1×n and 2×n Minesweeper consistency 

problems belong to P. When the board is extended to 

3×n or even larger, does there exist an NFA which 

can solve this problem? This is a quite interesting 

open problem. We hope this paper will prompt 

researchers to study other related problems. 
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